nxtomomill.converter.hdf5.acquisition.standardacquisition.StandardAcquisition#
- class nxtomomill.converter.hdf5.acquisition.standardacquisition.StandardAcquisition(root_url, configuration, detector_sel_callback, start_index, parent=None)[source]#
Bases:
BaseAcquisition
Class to collect information from a bliss - hdf scan (see https://bliss.gitlab-pages.esrf.fr/fscan). Once all data is collected a set of NXtomo will be created. Then NXtomo instances will be saved to disk.
- Parameters
root_url – url of the acquisition. Can be None if this is the initialization entry
configuration – configuration to use to collect raw data and generate outputs
detector_sel_callback – possible callback to retrieve missing information
Methods
__init__
(root_url, configuration, ...[, parent])camera_is_valid
(det_name)check_tomo_n
()get_already_defined_params
(key)Return axis display for the detector data to be used by silx view
get_detector_roi
()Return the expected number of nxtomo created for this acquisition.
get_translation_z_frm
(root_node, n_frame, ...)is_different_sequence
(entry)Can we have several entries 1.1, 1.2, 1.3.
is_part_of_same_series
(other)- rtype
bool
parent_root_url
()read_entry
()register_step
(url[, entry_type, copy_frames])- param url
entry to be registered and contained in the
to_NXtomos
(request_input, input_callback[, ...])- rtype
tuple
write_as_nxtomo
(shift_entry, ...[, ...])This function will dump the acquisition to disk as an NXtomo
Attributes
configuration
data_type
dim_1
dim_2
expo_time
image_key_control
Return the dict of all know machine electric current.
n_frames
n_frames_actual_bliss_scan
Should we raise an error if we encounter or an issue or should we just log an error message
root_url
rotation_angle
Return the '_sample_x' attribute.
Return the '_sample_y' attribute.
start_index
- rtype
int
translation_y
translation_z
x_flipped
y_flipped
- get_axis_scale_types()#
Return axis display for the detector data to be used by silx view
- get_expected_nx_tomo()[source]#
Return the expected number of nxtomo created for this acquisition. This is required to get consistent entry and file name. At lest for automation
- is_different_sequence(entry)#
Can we have several entries 1.1, 1.2, 1.3… to consider.
- property known_machine_electric_current#
Return the dict of all know machine electric current. Key is the time stamp, value is the electric current
- property raise_error_if_issue#
Should we raise an error if we encounter or an issue or should we just log an error message
- register_step(url, entry_type=None, copy_frames=False)[source]#
- Parameters
url – entry to be registered and contained in the acquisition
entry_type – type of the entry if know. Overwise will be ‘evaluated’
- property sample_x#
Return the ‘_sample_x’ attribute.
- property sample_y#
Return the ‘_sample_y’ attribute.
- write_as_nxtomo(shift_entry, input_file_path, request_input, divide_into_sub_files, input_callback=None)#
This function will dump the acquisition to disk as an NXtomo
- Parameters
shift_entry (
int
) – index of the entry to start saving new nxtomos.input_file_path (
str
) – output file pathrequest_input (
bool
) – if True the conversion can ask user some missing metadatadivide_into_sub_files (
bool
) – if True then create one file per NXtomoinput_callback – function to call for users to provide missing metadata
- Return type
tuple