nxtomomill.converter.hdf5.acquisition.standardacquisition.StandardAcquisition#

class nxtomomill.converter.hdf5.acquisition.standardacquisition.StandardAcquisition(root_url, configuration, detector_sel_callback, start_index, parent=None)[source]#

Bases: BaseAcquisition

Class to collect information from a bliss - hdf scan (see https://bliss.gitlab-pages.esrf.fr/fscan). Once all data is collected a set of NXtomo will be created. Then NXtomo instances will be saved to disk.

Parameters
  • root_url – url of the acquisition. Can be None if this is the initialization entry

  • configuration – configuration to use to collect raw data and generate outputs

  • detector_sel_callback – possible callback to retrieve missing information

__init__(root_url, configuration, detector_sel_callback, start_index, parent=None)[source]#

Methods

__init__(root_url, configuration, ...[, parent])

camera_is_valid(det_name)

check_tomo_n()

get_already_defined_params(key)

get_axis_scale_types()

Return axis display for the detector data to be used by silx view

get_detector_roi()

get_expected_nx_tomo()

Return the expected number of nxtomo created for this acquisition.

get_translation_z_frm(root_node, n_frame, ...)

is_different_sequence(entry)

Can we have several entries 1.1, 1.2, 1.3.

is_part_of_same_series(other)

rtype

bool

parent_root_url()

read_entry()

register_step(url[, entry_type, copy_frames])

param url

entry to be registered and contained in the

to_NXtomos(request_input, input_callback[, ...])

rtype

tuple

write_as_nxtomo(shift_entry, ...[, ...])

This function will dump the acquisition to disk as an NXtomo

Attributes

configuration

data_type

dim_1

dim_2

expo_time

image_key_control

known_machine_electric_current

Return the dict of all know machine electric current.

n_frames

n_frames_actual_bliss_scan

raise_error_if_issue

Should we raise an error if we encounter or an issue or should we just log an error message

root_url

rotation_angle

sample_x

Return the '_sample_x' attribute.

sample_y

Return the '_sample_y' attribute.

start_index

rtype

int

translation_y

translation_z

x_flipped

y_flipped

get_axis_scale_types()#

Return axis display for the detector data to be used by silx view

get_expected_nx_tomo()[source]#

Return the expected number of nxtomo created for this acquisition. This is required to get consistent entry and file name. At lest for automation

is_different_sequence(entry)#

Can we have several entries 1.1, 1.2, 1.3… to consider.

property known_machine_electric_current#

Return the dict of all know machine electric current. Key is the time stamp, value is the electric current

property raise_error_if_issue#

Should we raise an error if we encounter or an issue or should we just log an error message

register_step(url, entry_type=None, copy_frames=False)[source]#
Parameters
  • url – entry to be registered and contained in the acquisition

  • entry_type – type of the entry if know. Overwise will be ‘evaluated’

property sample_x#

Return the ‘_sample_x’ attribute.

property sample_y#

Return the ‘_sample_y’ attribute.

write_as_nxtomo(shift_entry, input_file_path, request_input, divide_into_sub_files, input_callback=None)#

This function will dump the acquisition to disk as an NXtomo

Parameters
  • shift_entry (int) – index of the entry to start saving new nxtomos.

  • input_file_path (str) – output file path

  • request_input (bool) – if True the conversion can ask user some missing metadata

  • divide_into_sub_files (bool) – if True then create one file per NXtomo

  • input_callback – function to call for users to provide missing metadata

Return type

tuple