tomoscan.esrf.scan.fscan.FscanDataset#
- class tomoscan.esrf.scan.fscan.FscanDataset(fname, entry=None, detector_name=None, on_missing_metadata='raise')#
Bases:
object
A simple class for parsing ESRF-Fscan datasets https://gitlab.esrf.fr/bliss/fscan
- __init__(fname, entry=None, detector_name=None, on_missing_metadata='raise')#
Build a Dataset object. Each object is tied to only one entry.
- Parameters
fname – Path to the HDF5 file.
entry – HDF5 entry. If not provided, the first entry is taken.
detector_name – Detector name
on_missing_metadata – behavior when let missing metadata. Valid values are ‘print’ or ‘raise’
Methods
__init__
(fname[, entry, detector_name, ...])Build a Dataset object.
Go through all LIMA files and retrieve dataset size (nb frame)
get_stack_size
([use_file_n])Get dataset stack size of one LIMA file (size can be different, if cancel for example)
get_virtual_sources
([remove_nonexisting, ...])Return a dict with the virtual sources of the current dataset.
Attributes
Get the exposure time in seconds
guess_detector_name_if_missing
- property exposure_time#
Get the exposure time in seconds
- get_all_stacks_sizes()#
Go through all LIMA files and retrieve dataset size (nb frame)
- get_stack_size(use_file_n=0)#
Get dataset stack size of one LIMA file (size can be different, if cancel for example)
- Parameters
use_file_n (
int
) – Which file to take to get stack size. Default is first file.
- get_virtual_sources(remove_nonexisting=True, force_recompute=False)#
Return a dict with the virtual sources of the current dataset.
- Parameters
remove_nonexisting (
bool
) – Whether to check that each target file actually exists, and possibly remove the non-existing filesforce_recompute (
bool
) – if False and already get virtual sources in cache return them