
ESRF tomography software

This document describes the ESRF tomography processing software under
development: Nabu https://gitlab.esrf.fr/tomotools/nabu/

Features and scope

The features and scope of the Nabu package are translated in its structure

(modules). For example there is a nabu.preproc module,

nabu.reconstruction , nabu.io , etc.

Pre-processing:

Intensity normalization (�at-�eld)
Phase retrieval
CCD corrections (hot spots)
Projections-based rings artefacts removal ("double �at-�eld")
Sinogram-based rings artefacts removal (Fourier-Wavelets �lter)

Reconstruction:

Center of rotation �nding methods
FBP
in the future: iterative (can be designed �exibly with Projection and
Backprojection available as operator)

Input/output:

HDF5 with Nexus convention
npy/npz (unof�cial, for development and debug)
in the future: tiff and jpeg2000

Miscellaneous image/volume processing features:

unsharp mask (simple deconvolution of gaussian PSF)
binning
median �lter

Post-processing (in not-so-near future !):

post-reconstruction artefacts removal
volume stitching

Computations distributions

af://n1120
https://gitlab.esrf.fr/tomotools/nabu/
af://n1123

Computations distributions on the local machine or in a task
scheduler (SLURM, ...) using dask.distributed.
In Nabu, we try to decouple the "computation distribution logic"
from actual implementation of processing steps.

Internal pipelines

Default "full-�eld tomography pipeline"
in the future: XRD-CT pipeline
A general-purpose customizable pipeline where components
(nabu.app.component) are plugged. It is experimental at this point.

processing-related features are implemented with three backends:

python/numpy/scipy: reference implementations
cuda
opencl

The Cuda and Opencl implementations use pycuda and pyopencl respectively.

State of the art and requirements

There are several well-known tomography software used in various institutes,
for example tomopy (APS, Elettra), Savu (DLS) and UFO (KIT). Each of them
has its own "approach" when it comes to building an end-to-end tomography
processing work�ow:

Tomopy provides building blocks of essential tomography features.
UFO/Tofu provides an Opencl-based pipeline, trying to achieve
bare-metal performances with a �lter-based approach.
Savu offers a very customizable toolkit by integrating many existing
software through a plugins system.

Each of them has its own advantages and drawbacks, which out of the scope of
the current document. In the end, it was decided to start a new project to ful�ll
the following requirements:

A software being primarily a library of tomography processing, with
"applications" built on top of it, usable by both non-experts and
power-users
High performance (parallelization with Cuda/OpenCL, computations
distribution, memory re-use)
Extensive documentation
Support of different tomography modalities: absorption, phase
contrast, diffraction and �uorescence
Of�cial support by the ESRF Data Analysis Unit, with a "bus factor"
greater than one
Compatible with ESRF legacy software, progressively replacing it

af://n1191

While the �rst three points would suggest to use an off-the-shelf software, the
other points leave little choice to start a new project. In particular, the last
point is critical. There are many tomography beamlines at ESRF, each using
various in-house dedicated tools that is only known locally. The current
project also aims at sharing tools and avoid duplicating efforts. Besides,
starting a new project does not prevent from using other projects components
and contributing to these projects.

Technical choices

High performances processing pipeline

Implementing an individual processing feature (ex. "FBP") is generally simple.
In fact, there are chances that an implementation is already available in
another software. What takes time is to

1. verify that it works well (validation on ground-truth, unit tests)
2. provide a high performance implementation
3. document this feature for the �nal user
4. integrate this feature in a wider processing pipeline

In the best case, points (1) to (3) are ful�lled when using an off-the-shelf
implementation of another software.

The tricky point is to keep high performance when using various components
together. Usually, tomography software assume that "everything �ts in
memory" or considear each component individually. We try to design Nabu so
that memory transactions are minimized.

Usage of native code

Nabu uses Cuda and OpenCL to offer a high speed implementation of various
processing features. Cuda and OpenCL are used through pycuda/pyopencl
respectively.

Although OpenCL seems more appealing on many points, its uncertain future
lead to choose Cuda as the default GPU backend. Having the two backends
comes at the expanse of possible code duplication.

An important point is the presence of native code in Nabu. By experience, a
Python module having native code extensions (C/C++ wrapped with Cython,
pybind11, etc) is cumbersome to distribute and deploy. Therefore, we want to
avoid ahead-of-time compilation (ex. Cython). Pyopencl and pycuda enable to
achieve this goal with Just-In-Time compilation.

Computations distribution

af://n1215
af://n1216
af://n1230
af://n1235

In Nabu, we try to decouple the "computation distribution logic" from actual
implementation of processing steps. In particular, solutions that are "invasive"
in the code like MPI are avoided. We use the Remote Procedural Call (RPC)
approach to distribute the computations, with the goal to "move the
computing resources to the data, not the other way around". This approach
offers many advantages, but has also limitations to keep in mind (ex. sharing
memory might be trickier).

The modules dask.distributed and dask_jobqueue are used, as we believe

they are well-�t for the tomography processing use case.

Dependencies

Summary

Nabu uses the following python modules:

Required: numpy, silx, tomoscan, pytest
Optionally, for using the Cuda backend: pycuda and scikit-cuda

Optionally, for using the OpenCL backend: pyopencl

Optionally, for distributing the computations: dask.distributed

Optionally, for distributing the computations on a task scheduler:
dask_jobqueue

Although some modules listed are optional (meaning Nabu can work without
them), the user experience will be degraded without them ; for example
processing will be very slow with the default python/numpy-based
implementations.

Of course python modules like pyopencl have in turn system dependencies (eg.
a working OpenCL installation).

Full dependency trees

As of April 2020, the dependency trees of main python modules are the
following.

Nabu

dask-jobqueue

dask

distributed

click

cloudpickle

dask

af://n1239
af://n1240
af://n1255

msgpack

psutil

pyyaml

setuptools

sortedcontainers

tblib

toolz

tornado

zict

heapdict
distributed

click

cloudpickle

dask

msgpack

psutil

pyyaml

setuptools

sortedcontainers

tblib

toolz

tornado

zict

heapdict
numpy

psutil

pytest

attrs

importlib-metadata

zipp
more-itertools

packaging

pyparsing
six

pluggy

importlib-metadata

zipp
py

wcwidth

silx

fabio

numpy
setuptools

h5py

numpy
six

numpy

setuptools

six

tomoscan

setuptools
lxml

pycuda==2019.1.2

appdirs

decorator

mako

MarkupSafe
pytools

appdirs
decorator
numpy
six

pyopencl==2019.1.2

appdirs

decorator

numpy

pytools

appdirs
decorator
numpy
six

six

scikit-cuda==0.5.3

mako

MarkupSafe
numpy

pycuda

appdirs

decorator

mako

MarkupSafe

pytools

appdirs
decorator
numpy
six

	ESRF tomography software
	Features and scope
	State of the art and requirements
	Technical choices
	High performances processing pipeline
	Usage of native code
	Computations distribution

	Dependencies
	Summary
	Full dependency trees

